28范文 >工作计划

剪三角形教案最新6篇

每个教案都代表了我们对课程的独特理解,我们需要不断反思教案,在实践中进行改进,下面是28范文小编为您分享的剪三角形教案最新6篇,感谢您的参阅。

剪三角形教案最新6篇

剪三角形教案篇1

学习目标:

(1) 知识与技能 :

掌握三角形内角和定理的证明过程,并能根据这个定理解决实际问题。

(2) 过程与方法 :

通过学生猜想动手实验,互相交流,师生合作等活动探索三角形内角和为180度,发展学生的推理能力和语言表达能力。对比过去撕纸等探索过程,体会思维实验和符号化的理性作用。逐渐由实验过渡到论证。

通过一题多解、一题多变等,初步体会思维的多向性,引导学生的个性化发展。

(3)情感态度与价值观:

通过猜想、推理等数学活动,感受数学活动充满着探索以及数学结论的确定性,提高学生的学习数学的兴趣。使学生主动探索,敢于实验,勇于发现,合作交流。

一.自主预习

二.回顾课本

1、三角形的内角和是多少度?你是怎样知道的?

2、那么如何证明此命题是真命题呢?你能用学过的'知识说一说这一结论的证明思路吗?你能用比较简洁的语言写出这一证明过程吗?与同伴进行交流。

3、回忆证明一个命题的步骤

①画图

②分析命题的题设和结论,写出已知求证,把文字语言转化为几何语言。

③分析、探究证明方法。

4、要证三角形三个内角和是180,观察图形,三个角间没什么关系,能不能象前面那样,把这三个角拼在一起呢?拼成什么样的角呢?

①平角,②两平行线间的同旁内角。

5、要把三角形三个内角转化为上述两种角,就要在原图形上添加一些线,这些线叫做辅助线,在平面几何里,辅助线常画成虚线,添辅助线是解决问题的重要思想方法。如何把三个角转化为平角或两平行线间的同旁内角呢?

① 如图1,延长bc得到一平角bcd,然后以ca为一边,在△abc的外部画a。

② 如图1,延长bc,过c作ce∥ab

③ 如图2,过a作de∥ab

④ 如图3,在bc边上任取一点p,作pr∥ab,pq∥ac。

三、巩固练习

四、学习小结:

(回顾一下这一节所学的,看看你学会了吗?)

五、达标检测:

六、布置作业

剪三角形教案篇2

教学建议

知识结构

重难点分析

本节的重点是中位线定理.三角形中位线定理和梯形中位线定理不但给出了三角形或梯形中线段的位置关系,而且给出了线段的数量关系,为平面几何中证明线段平行和线段相等提供了新的思路.

本节的难点是中位线定理的证明.中位线定理的证明教材中采用了同一法,同一法学生初次接触,思维上不容易理解,而其他证明方法都需要添加2条或2条以上的辅助线,添加的目的性和必要性,同以前遇到的情况对比有一定的难度.

教法建议

1. 对于中位线定理的引入和证明可采用发现法,由学生自己观察、猜想、测量、论证,实际掌握效果比应用讲授法应好些,教师可根据学生情况参考采用

2.对于定理的证明,有条件的教师可考虑利用多媒体课件来进行演示知识的形成及证明过程,效果可能会更直接更易于理解

教学设计示例

一、教学目标

1.掌握中位线的概念和三角形中位线定理

2.掌握定理“过三角形一边中点且平行另一边的直线平分第三边”

3.能够应用三角形中位线概念及定理进行有关的论证和计算,进一步提高学生的计算能力

4.通过定理证明及一题多解,逐步培养学生的分析问题和解决问题的能力

5. 通过一题多解,培养学生对数学的兴趣

二、教学设计

画图测量,猜想讨论,启发引导.

三、重点、难点

1.教学重点:三角形中位线的概论与三角形中位线性质.

2.教学难点:三角形中位线定理的证明.

四、课时安排

1课时

五、教具学具准备

投影仪、胶片、常用画图工具

六、教学步骤

?复习提问】

1.叙述平行线等分线段定理及推论的内容(结合学生的叙述,教师画出草图,结合图形,加以说明).

2.说明定理的证明思路.

3.如图所示,在平行四边形abcd中,m、n分别为bc、da中点,am、cn分别交bd于点e、f,如何证明 ?

分析:要证三条线段相等,一般情况下证两两线段相等即可.如要证 ,只要 即可.首先证出四边形amcn是平行四边形,然后用平行线等分线段定理即可证出.

4.什么叫三角形中线?(以上复习用投影仪打出)

?引入新课】

1.三角形中位线:连结三角形两边中点的线段叫做三角形中位线.

(结合三角形中线的定义,让学生明确两者区别,可做一练习,在 中,画出中线、中位线)

2.三角形中位线性质

了解了三角形中位线的定义后,我们来研究一下,三角形中位线有什么性质.

如图所示,de是 的一条中位线,如果过d作 ,交ac于 ,那么根据平行线等分线段定理推论2,得 是ac的中点,可见 与de重合,所以 .由此得到:三角形中位线平行于第三边.同样,过d作 ,且de fc,所以de .因此,又得出一个结论,那就是:三角形中位线等于第三边的一半.由此得到三角形中位线定理.

三角形中位线定理:三角形中位城平行于第三边,并且等于它的一半.

应注意的两个问题:①为便于同学对定理能更好的掌握和应用,可引导学生分析此定理的.特点,即同一个题设下有两个结论,第一个结论是表明中位线与第三边的位置关系,第二个结论是说明中位线与第三边的数量关系,在应用时可根据需要来选用其中的结论(可以单独用其中结论).②这个定理的证明方法很多,关键在于如何添加辅助线.可以引导学生用不同的方法来证明以活跃学生的思维,开阔学生思路,从而提高分析问题和解决问题的能力.但也应指出,当一个命题有多种证明方法时,要选用比较简捷的方法证明.

由学生讨论,说出几种证明方法,然后教师总结如下图所示(用投影仪演示).

(l)延长de到f,使 ,连结cf,由 可得ad fc.

(2)延长de到f,使 ,利用对角线互相平分的四边形是平行四边形,可得ad fc.

(3)过点c作 ,与de延长线交于f,通过证 可得ad fc.

上面通过三种不同方法得出ad fc,再由 得bd fc,所以四边形dbcf是平行四边形,df bc,又因de ,所以de .

(证明过程略)

例 求证:顺次连结四边形四条边的中点,所得的四边形是平行四边形.

(由学生根据命题,说出已知、求证)

已知:如图所示,在四边形abcd中,e、f、g、h分别是ab、bc、cd、da的中点.

求证:四边形efgh是平行四边形.‘

分析:因为已知点分别是四边形各边中点,如果连结对角线就可以把四边形分成三角形,这样就可以用三角形中位线定理来证明出四边形efgh对边的关系,从而证出四边形efgh是平行四边形.

证明:连结ac.

∴ (三角形中位线定理).

同理,

∴gh ef

∴四边形efgh是平行四边形.

?小结】

1.三角形中位线及三角形中位线与三角形中线的区别.

2.三角形中位线定理及证明思路.

七、布置作业

教材p188中1(2)、4、7

剪三角形教案篇3

教学目标

⑴探索并发现三角形的内角和是180°,能利用这个知识解决实际问题。

⑵学生在经历观察、猜测、验证的过程中,提升自身动手动脑及推理、归纳总结的能力。

⑶在参与学习的过程中,感受数学独特的魅力,获得成功体验,并产生学习数学的积极情感。

教学重点:检验三角形的内角和是180°。

教学难点:引导学生通过实验探究得出三角形的内角和是180度。

教学环节:问题情境与

教师活动:学生活动媒体应用设计意图

目标达成

导入新课

一、复习旧知,导入新课。

1、复习三角形分类的知识。

师出示三角形,生快速说出它的名称。

2、什么是三角形的内角?

我们通常所说的角就是三角形的内角。为了便于称呼,我们习惯用∠a、∠b、∠c来表示。

什么是三角形的内角和?

三角形“三个内角的度数之和”就是三角形的`内角和。用一个含有∠a、∠b、∠c的式子来表示应该如何写?∠a+∠b+∠c。

3、今天这节课啊我们就一起来研究三角形的内角和。(揭题:三角形的内角和)

由三角形的内角引出三角形的内角和,“∠a+∠b+∠c”的表示形式形象的体现出三内角求和的关系

二、动手操作,探究新知

1、出示三角板,猜一猜。

师:这个三角形的内角和是多少度?熟悉这副三角板吗?请拿出形状与这块一样的三角板,并同桌互相指一指各个角的度数

把三角形三个内角的度数合起来就叫三角形的内角和。是不是所有的三角形的内角和都是180°呢?你能肯定吗?

我们得想个办法验证三角形的内角和是多少?可以用什么方法验证呢?

3.学生测量

4.汇报的测量结果

除了我们这节课大家想到的方法,还有很多方法也能验证三角形的内角和是180°到初中我们还要更严密的方法证明三角形的内角和是180°

5、巩固知识。

一个三角形中能不能有两个直角?能不能有2个钝角?

环节

三、应用所学,解决问题。

1、基础练习(课本第68页做一做)

在一个三角形中,∠1=140度,∠3=25度,求∠2的度数。

2、判断题

(1)大三角形的内角和大于180度。()

(2)三角形的内角和可能是180度。()

(3)一个三角形中最多只能有一个直角。()

(4)三角形的三个内角分别可能是30度,60度,70度。()

3、求出下面三角形各角的度数。

(1)我三边相等。

(2)我是等腰三角形,我的顶角是96°。(3)我有一个锐角是40°。

四、总结:这节课你有什么收获?

剪三角形教案篇4

教学目标

一、知识与技能

1.理解三角形内角和定理及其验证方法,能够运用其解决一些简单问题;

2.掌握三角形按边分类方法,能够判定三角形是否为特殊的三角形;

3.掌握三角形的中线、角平分线、高的定义;

二、过程与方法

1.经历观察、操作、想象、推理、交流等活动,进一步发展推理能力和有条理表达的能力;

2.经历探索三角形的中线、角平分线和高线,并能够对其进行简单的应用;

三、情感态度和价值观

1.激发学生学习数学的兴趣,认识三角形的中线、角平分线和高线;

2.使学生在积极参与探索、交流的数学活动中,进一步体验数学与实际生活的密切联系;

教学重点

探索并掌握三角形三边之间的关系,能够运用三角形的三边关系解决问题;

教学难点

理解直角三角形的相关性质并能够运用其解决问题;

教学方法

引导发现法、启发猜想

课前准备

教师准备

课件、多媒体

学生准备

练习本;

课时安排

3课时

教学过程

一、导入

在生活中,三角形是非常普通的图形之一. 你能在下面的图中找出三角形吗?

二、新课

观察下面的屋顶框架图:

(1)你能从图 4-1 中找出 4 个不同的三角形吗?

(2)这些三角形有什么共同的特点?

由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形 . 三角形有三条边、 三个内角和三个顶点.“三角形” 可以用符号“△”表示,如图 4-2 中顶点是 a,b,c 的三角形, 记作“△abc ” .

下面哪一幅图是三角形?

△abc 的三边,有时也用 a,b,c 来表示. 如图 3-3 中,顶点 a 所对的边 bc 用 a 表示,边ac、边 ab 分别用 b,c 来表示. 我们知道,将一个三角形的三个角撕下来,拼在一起,可以得到三角形的内角和为180°. 小明只撕下三角形的一个角,也得到了上面的结论,他是这样做的:

(1)如图 4-4所示,剪一个三角形纸片,它的三个内角分别为 ∠ 1,∠ 2 和 ∠ 3.

(2)将 ∠ 1 撕下,按图 4-5 所示进行摆放,其中∠1 的顶点与 ∠2 的顶点重合,它的一条边与∠2的一条边重合. 此时 ∠1 的`另一条边 b 与∠3 的一条边a 平行吗?为什么?

(3)如图 4-6 所示,将∠3 与∠2 的公共边延长,它与 b 所夹的角为 ∠4.∠3 与∠4 的大小有什么关系?为什么?

三、习题

1.下图中,△abc 的 bc 边上的高画得对吗?若不对,请改正.

四、拓展

1.一块三角形的煎饼,要把它分成大小相同的6块应怎样分?你有多少种分法?如果限定只能切三刀呢?

五、小结

通过本节课的内容,你有哪些收获?

1.知道三角形的定义、三角形的内角和,会对三角形进行分类;

2.三角形的中线、角平分线、高线的定义和性质.

剪三角形教案篇5

活动目标

认识三角形,知道三角开有三条边,三个角,复习手口一致点数到了。

培养幼儿的观察和比较能力。

引导幼儿积极与材料互动,体验数学活动的乐趣。

乐意参与活动,体验成功后的乐趣。

教学重点、难点

1、认识三角形,并知道三角形有许多形状

2、区分三角形与正方形

活动准备

教具:三角形的彩纸或吹塑纸,等边三角形,等腰三角形,直角三角形,锐角三角形,钝角三角形各1张。够每个幼儿做1-2个三角形的小棍(长短不同),正方形彩纸一张

活动过程

1、 三角形是什么样子的?老师出示一个等腰三角形,告诉幼儿这是一个三角形,。请幼儿数一数三角形有几条边?几个角?

教师小结:这是一个三角形,三角形有三条边,三个角,凡是有三条边,三个角的图形,我们都把它叫做三角形。

2、 复习对三角形的认识。教师出示一个直角三角形,请幼儿想一想这是什么形状?为什么?

3、 和正方形比一比,看有什么不同。教师一个正文形请幼儿说出名称,并找出正方形和三角形有哪些不同的地方?

教师小结:

正方形有四条边,三角形有三条边,正方形的四条边一样长,三角形的三条边不一样长;正方形有四个角,三角形有三个角;正方形的四个角一样大,三角形的三个角可以不一样大。(教师边说边演示)

4、 它们都是三角形吗?教师出示各种三角形,请幼儿说说它们是不是三角形,为什么?(幼儿只要答出“是三角形,因为它们都有三条边,三个角”就可以了。

教师小结:

①、三角形有三条边,三个角

②、三角形有许多兄弟,它们虽然长得不一样,可是它们都有三条边,三个角

③、三角形的三条边可以不一样长,三个角可以不一样大

④、只要一个图形有三条边,三个角,它们就是三角形

5、让幼儿寻找常见实物中有什么东西像三角形

6、幼儿操作。将许多长短不同的小棍放在幼儿数3根小棍做三角形(可以找一样长的.小棍也可以找不一样长的;做得快的可以做第二个,第三个)。

教学反思

我上这节数学课,就是让孩子们认识三角形,难点就是让幼儿如何区分三角形和正方形。在这教学过程中,我将许多长短不同的小棍放在孩子们的桌上,让孩子们数3 根小棍拼做三角形(可以找一样长的小棍,也可以找不一样长的)。通过让他们动手操作,让孩子们进一步认识到了1、三角形有三个角、三条边2、三角形的三条边可以不一样长,三个角可以不一样大。

剪三角形教案篇6

【教学目标】

1、使学生理 解边边边公理的 内容,能运用边边边公理证明三角形全等,为证明线段相等或角相等创造条件;

2、继续培养学生画图、实 验,发现新知识的能力。

【重点难点】

1、难点:让学生掌握边边边 公理的内容和运用公理 的自觉性;

2、重点:灵活运用sss判定两个三角形是否全等。

【教学过程 】

一、创设问题情境,引入新课

请问同学,老师在黑板上画得两个三角形,△ abc与△ 全等吗? 你是如何判定的。

(同学们各抒己见,如:动手用纸剪下一个三角形,剪下叠到另一个三角形上,是否完全重合;测量两个三角形的所有边与角,观 察是否有三条边对应相等,三个角对应相等。)

上一节课我们已经探讨两个三角形只满足一个或两个边、角对应相等条件时,两个三角形不一定全等。满足三个条件时,两个三 角形是否全等呢?现在,我们就一起来探讨研究。

二、实践探索,总结规律

1、问题1:如果两个三角形的三条边分别相等,那么这两个三角形会全等吗?做一做:给你三条线段 、 、 ,分别为 、 、 ,你能画出这个三角形吗?

先请几位同学说说画图思路后,教师指导,同学们动手画,教师演示并叙述书写出步骤。

步骤:

(1)画一线段ab使 它的长度等于c(4.8cm)。

(2)以点a为圆心,以线段b(3cm)的长为半径画圆弧;以点b为圆心,以线段a(4cm)的长为半径画圆弧;两弧交于点c.

(3)连结ac、bc.

△abc即为所求

把你画的三角形与其他同学的图形叠合在一起,你们会发现什么?

换三条线段,再试试看,是否有同样的 结论

请你结合画图、对比,说说你发现什么?

同学们各抒己见,教师总结:给定三条线段,如果它们能组 成三角形,那么所画的三角形都是全等的。 这样我们就得到判定三角形全等的一种简便 的方法: 如果两个三角形的 三 条边分别对应相等,那么这两个三角形全等.简写为“边边边”,或简记为(s.s.s.)。

2、问题2:你能用 相似三角形的判定法解释这个(sss)三角形全等的判定法吗?

(我们已经知道,三条边对应成比例的两个三角形相似,而相似比为1时,三条边就分别对应相等,这两个三角形不但形状相同,而且大小都一样,即为全等三角形。)

3、问题3、你用这个“sss”三角形全等的判定法解释三角形具有稳定性吗?

(只要三角形三边的长度确定,这个三角形的形状和大小就完全确定)

4、范例:

例1 四边形abcd中,ad=bc,ab=dc,试说明△abc≌△cda. 解:已知 ad=bc,ab=dc , 又因为ac是公共边,由(s.s.s.)全等判定法,可知 △abc≌△cda

会计实习心得体会最新模板相关文章:

体育健康活动教案6篇

入园安全教案6篇

《感恩教育》教案精选6篇

安全防溺水安全教案优秀6篇

安全防溺水安全教案优质6篇

幼儿园中班寒假安全教育教案6篇

小学跳绳的教案6篇

中班幼儿园教案通用6篇

中班幼儿园教案参考6篇

暑假假期安全教育教案6篇

    相关推荐

    热门推荐

    点击加载更多
    32
    c
    79091

    联系客服

    微信号:fanwen9944
    点击此处复制微信号

    客服在线时间:
    星期一至星期五 8:30~12:30 14:00~18:00

    如有疑问,扫码添加客服微信,
    问题+截图进行提问,客服会第一时间答复。