28范文 >工作计划

初二下数学教案优质5篇

教案可以采用不同的格式,如大纲、流程图、表格或文本形式,教案可以用于教师之间的教学经验分享和交流,28范文小编今天就为您带来了初二下数学教案优质5篇,相信一定会对你有所帮助。

初二下数学教案优质5篇

初二下数学教案篇1

教学目标

1.知道梯形、等腰梯形、直角梯形的有关概念;能说出并证明等腰梯形的两个性质;等腰梯形同一底上的两个角相等;两条对角线相等。

2.会运用梯形的有关概念和性质进行有关问题的论证和计算。

3.通过添加辅助线,把梯形的问题转化成平行四边形或三角形问题,使学生体会图形变换的方法和转化的思想。

教学模式问题解决教学

教学过程

想一想:

什么样的四边形是平行四边形?平行四边形有哪些性质?学生回答后,教师板书以下关系图中的有关部分:

画一画:

画一个梯形,并指出梯形的上、下底,画出梯形的高。

问题教学

问题1:根据刚才的画图,请给梯形下一个定义,并说说梯形与平行四边形的区别和联系。(说明与建议:(l)让学生自己给梯形下定义,有助于训练学生观察、概括和语言表述的能力。如果学生定义时,遗漏了"另一组对边不平行"教师可举及例(2)对梯形的定义,还可以让学生讨论以下问题:一组对边平行且这组对边不相等的四边形是梯形吗?为什么?教师可用反证法的思想说理。然后,板书完成"想一想"中的关系图,并结合图表指出:梯形和平行四边形的区别和联系。(3)梯形的高是指夹在两底间的公垂线段,在计算面积时高即为上下两底(平行线)间的距离,也就是夹在两底间的公垂线段的长度。画高时可以从上底任一点向下底作垂线段,一般常从上底的两端向下底作垂线段可方便地构造直角三角形,便于计算。)

问题2:如图4.9-1,在(1)中:四边形abcd的ad∥bc,abcd,且cd⊥bc;在(2)中,四边形abcd的ad∥bc,abcd,且ab=cd。请你给这两种四边形命名。(说明与建议:学生说出图(l)的四边形是直角梯形,图(2)是等腰梯形,通常不会有困难;教师应进一步引导学生讨论,在图(1)中cd⊥bc,那么cd⊥ad吗?(cd⊥ad,且指出:cd就是直角梯形的高)当cd⊥bc时,另一腰ab可以垂直bc吗?为什么?(若ab⊥bc,那么四边形abcd就成为矩形了,不再是梯形。)在图(2)中,上底ad与下底bc能相等吗?(不能,否则四边形abcd成为平行四边形,不再是梯形。)

练一练:课本例1后练习第l、2题。

问题3:观察图4.9-2中的等腰梯形abcd,猜想它还可能具有哪些特殊性质。并能证明你的猜想吗?

说明与建议:(l)教师要用微笑、点头、赞叹、激励的表情和话语来鼓励学生大胆猜想。(2)学生可能提出以下猜想:∠b=∠c,∠a=∠d,∠a+∠b=,∠c+∠d=,是轴对称图形等等。教师要引导学生关注等腰梯形特有的性质---等腰梯形的底角相等。(3)如何证明这个猜想,可让学生自己思考、探索、交流,教师给以引导,鼓励证明多样化,如课本第174页的证法。教师可提醒学生证明过程中用到了"夹在平行线间的平行线段相等"这一性质。并指出:这种证法的实质是把一腰平移,从而构造出等腰三角形;对于如图4.9-2(作ae⊥bc,df⊥bc)所示的证法,教师可指出:通过作梯形的两条高,可以构造出两个全等的直三角形等。

问题4:如何证明等腰梯形是轴对称图形呢?(说明与建议:可让学生用折纸的方法,确认等腰梯形是轴对称图形;教学中,还可引导学生借助等腰三角形的轴对称性加以证明,如图4.9-3,延长等腰梯形两腰ba、cd相交于点e,易证△aed和△ebc都是等腰三角形。ef⊥bc,则ef⊥ad,ef所在的直线是两个等腰三角形ead、ebc的对称轴。由轴对称图形可知,也是等腰梯形abcd的对称轴。因此,等腰梯形是轴对称图形,有一条对称轴,是过两底中点的直线。)

例题解析(课本例1)说明:本例的结论,为学生在讨论"问题3"时已提及,则可由学生自已完成证明,并概括成为一个文字命题。如学生讨论问题3时未提及,则可由教师引导学生猜想,然后再完成证明。

课堂练习1.课本例1后练习第3题。2.如图4.9-4,已知等腰梯形abcd的腰长为5cm,上、下底长分别是6cm和12cm,求梯形的面积。(方法一,过点c作ce∥ad,再作等腰三角形bce的高cf,可知cf=4cm。然后用梯形面积公式求解;方法二,过点c和d分别作高cf、dg,可知,从而在rt△agd中求出高dg=4cm。)

初二下数学教案篇2

1、教材分析

(1)知识结构:

(2)重点和难点分析:

重点:四边形的有关概念及内角和定理。因为四边形的有关概念及内角和定理是本章的基础知识,对后继知识的学习起着重要的作用。

难点:四边形的概念及四边形不稳定性的理解和应用。在前面讲解三角形的概念时,因为三角形的三个顶点确定一个平面,所以三个顶点总是共面的,也就是说,三角形肯定是平面图形,而四边形就不是这样,它的四个顶点有不共面的情况,又限于我们现在研究的是平面图形,所以在四边形的定义中加上在同一平面内这个条件,这几个字的意思学生不好理解,所以是难点。

2、教法建议

(1)本节的引入最好使用我们提供的多媒体课件,通过这个课件,使学生认识到这些四边形都是常见图形,研究它们具有实际应用意义,从而激发学生学习数学的兴趣。

(2)本节的教学,要以三角形为基础,可以仿照三角形,通过类比的方法建立四边形的有关概念,如四边形的边、顶点、内角、外角、内角和、外角和、周长等都可同三角形类比,要结合三角形、四边形的图形,对比着指给学生看,让学生明确这些概念。

(3)因为在三角形中没有对角线,所以四边形的对角线是一个新概念,它是解决四边形问题时常用的辅助线,通过它可以把四边形问题转化为三角形问题来解决。结合图形,让学生自己动手作四边形的一条对角线,并观察四边形的一条对角线把它分成几个三角形?两条对角线呢?使学生加深对对角线的作用的认识。

(4)本节用到的数学思想方法是化归转化的思想和类比的思想,教师在讲解本节知识时要渗透这两种思想方法,并且在本节小结中对这两种数学思想方法进行总结,使学生明白碰到复杂的、未知的问题要转化为简单的、已知的问题。

一、素质教育目标

(一)知识教学点

1、使学生掌握四边形的有关概念及四边形的内角和外角和定理。

2、了解四边形的不稳定性及它在实际生产,生活中的应用。

(二)能力训练点

1、通过引导学生观察气象站的实例,培养学生从具体事物中抽象出几何图形的能力。

2、通过推导四边形内角和定理,对学生渗透化归思想。

3、会根据比较简单的条件画出指定的四边形。

4、讲解四边形外角概念和外角定理时,联系三角形的有关概念对学生渗透类比思想。

(三)德育渗透点

使学生认识到这些四边形都是常见的,研究他们都有实际应用意义,从而激发学生学习新知识的兴趣。

(四)美育渗透点

通过四边形内角和定理数学,渗透统一美,应用美。

二、学法引导

类比、观察、引导、讲解

三、重点难点疑点及解决办法

1、教学重点:四边形及其有关概念;熟练推导四边形外角和这一结论,并用此结论解决与四边形内外角有关计算问题。

2、教学难点:理解四边形的有关概念中的一些细节问题;四边形不稳定性的理解和应用。

3、疑点及解决办法:四边形的定义中为什么要有在平面内,而三角形的定义中就没有呢?根据指定条件画四边形,关键是要分析好作图的顺序,一般先作一个角。

四、课时安排

2课时

五、教具学具准备

投影仪、胶片、四边形模型、常用画图工具

六、师生互动活动设计

教师引入新课,学生观察图形,类比三角形知识导出四边形有关概念;师生共同推导四边形内角和的定理,学生巩固内角和定理和应用;共同分析探索外角和定理,学生阅读相关材料。

第一课时

七、教学步骤

【复习引入】

在小学里已经对四边形、长方形、平形四边形的有关知识有所了解,但还很肤浅,这??

章我们将比较系统地学习各种四边形的性质和判定分析它们之间的关系,并运用有关四边形的知识解决一些新问题。

【引入新课】

用投影仪打出课前画好的教材中p119的图。

师问:在上图中你能把知道的长方形、正方形、平行四边形、梯形找出来吗?(启发学生找上述图形,最后教师用彩色笔勾出几个图形)。

【讲解新课】

1、四边形的有关概念

结合图形讲解四边形,四边形的边、顶点、角,凸四边形,四边形的对角线(同时学生在书上画出上述概念),讲解这些概念时:

(1)要结合图形。

(2)要与三角形类比。

(3)讲清定义中的关键词语。如四边形定义中要说明为什么加上同一平面内而三角形的定义中为什么不加同一平面内(三角形的三个顶点一定在同一平面内,而四个点有可能不在同一平面内,如图42中的点。我们现在只研究平面图形,故在定义中加上在同一平面内的限制)。

(4)强调四边形对角线的作用,作为四边形的一种常用的辅助线,通过它可以把四边形问题转化为三角形来解(渗透化归思想),并观察图4—3用对角线分成的这些三角形与原四边形的关系。

(5)强调四边形的表示方法,一定要按顶点顺序书写四边形如图41。

(6)在判断一个四边形是不是凸四边形时,一定要按照定义的要求把每一边都延长后再下结论如图4—4,图4—5。

2、四边形内角和定理

教师问:

(1)在图4—3中对角线ac把四边形abcd分成几个三角形?

(2)在图4—6中两条对角线ac和bd把四边形分成几个三角形?

(3)若在四边形abcd如图4—7内任取一点o,从o向四个顶点作连线,把四边形分成几个三角形。

我们知道,三角形内角和等于180,那么四边形的内角和就等于:

①2180=360如图4

②4180—360=360如图4—7。

例1已知:如图48,直线于b、于c。

求证:(1)(2)。

本例题是四边形内角和定理的应用,实际上它证明了两边相互垂直的两个角相等或互补的关系,何时用相等,何时用互补,如果需要应用,作两三步推理就可以证出。

【总结、扩展】

1、四边形的有关概念。

2、四边形对角线的作用。

3、四边形内角和定理。

八、布置作业

教材p128中1(1)、2、 3。

九、板书设计

初二下数学教案篇3

一、班级情况分析:

本学期一(1)班有学生40人,新转学来一名女生。上学期末考试及格人数28人,高分人数3人,优秀人数15人,虽然学生成绩在年级排名第一,能过镇中线,但是学生未能发挥出真实水平。优秀临界生以及及格临界生的提升潜力较大。

一(7)班有学生38人,上学期末考试及格人数18人,高分人数2人,优秀人数5人,全班优秀学生不多不够拔尖,成绩中层的学生占据大部分。学生好动,对数学学习的积极性普遍不够高,学生好动,课堂气氛较活跃。学生数学基础不扎实。提升空间较大。

两班的整体成绩均不够理想。

二、教材分析:

本套教材切合《标准》的课程目标,有以下特点:

1.为学生的数学学习构筑起点,提供大量数学活动的线索,成为供所有学生从事数学学习的出发点。

2.向学生提供现实、有趣、富有挑战性的学习素材。所有数学知识的学习,都力求从学生实际出发,以他们熟悉或感兴趣的问题情境引入学习主题,并展开数学探究。

3.为学生提供探索、交流的时间和空间。设立了“做一做”、“想一想”、“议一议”等栏目,以使学生通过自主探索与合作交流,形成新的知识。

4.展现数学知识的形成与应用过程,让学生经历真正的“做数学”、“用数学”的过程。

5.满足不同学生发展的需求。

三、教学目标及要求:

第一章:

1.经历用字母表示数量关系的过程,在现实情境中进一步理解字母表示数的意义,发展符号感。

2.经历探索整式运算法则的过程,理解整式运算的算理,进一步发展观察、归纳、类比、概括等能力,发展有条理的思考及语言表达能力。

3.了解整数指数幂的意义和正整数指数幂的运算性质,会进行简单的整式加、减、乘、除运算。

4.会推导乘法公式:(a+b)(a-b)=a2-b2 (a+b)=a2+2ab+b2

第二章:

1.经历观察、操作、想象、推理、交流等过程,进一步发展空间观念、推理能力和有条理表达的能力。

2.在具体情境中了解补角、余角、对顶角,知道等角的余角相等、等角的补角相等、对顶角相等。会用三角尺过已知直线外一点画这条直线的平行线;会用尺规作一条线段等于已知线段、作一个角等于已知角。

3.经历探索直线平行的条件以及平行线特征的过程,掌握直线平行的条件以及平行线的特征。

4.进一步激发学生对数学方面的兴趣,体验从数学的角度认识现实。

第三章:

1.能形象地描述百万分之一等较小的数据,并用科学记数法表示它们,进一步发展数感;能借助计算器进行有关科学记数法的计算。

2.了解近似数与有效数字的概念,能按要求取近似数,体会近似数的意义及在生活中的作用。

3.通过实例,体验收集、整理、描述和分析数据的过程。

4.能读懂统计图并从中获取信息,能形象、有效地运用统计图描述数据。

第四章:

1.经历从实际问题和游戏中了解必然事件、不可能事件和不确定事件发生的可能性。

2.体会等可能性与游戏规则的公平性,抽象出概率模型,计算概率,解决实际、作出合理决策的过程,体会概率是描述不确定现象的数学模型。

3.能设计符合要求的简单概率模型。

第五章:

1.通过观察、操作、想象、推理、交流等活动,发展空间观念,积累数学活动经验。

2.在探索图形性质的过程中,发展推理能力和有条理的表达能力。

3.进一步认识三角形的有关概念,了解三边之间的关系以及三角形的内角和,了解三角形的稳定性。

4.了解图形的全等,经历探索三角形全等条件的过程,掌握两个三角形全等的条件,能应用三角形的全等解决一些实际问题。

5.在分别给出两角一夹边、两边一夹角和三边的条件下,能够利用尺规作出三角形。

第六章:

1.经历探索具体情境中两个变量之间的关系的过程,进一步发展符号感和抽象思维。

2.能发现实际情境中的变量及其相互关系,并确定其中的自变量或因变量。

3.能从表格、图象中分析出某些变量之间的关系,并能用自己的语言进行表达,发展有条理地进行思考和表达的能力。

4.能根据具体问题,选取用表格或关系式来表示某些变量之间的关系,并结合对变量之间关系的分析,尝试对变化趋势进行初步的预测。

第七章:

1.在丰富的现实情境中,经历观察、折叠、剪纸,图形欣赏与设计等数学活动过程,进一步发展空间观念。

2.通过丰富的生活实例认识轴对称,探索它的基本性质,理解对应点所连的线段被对称轴垂直平分的性质。

3.探索并了解基本图形的轴对称性及其相关性质。

4.能够按要求作出简单平面图形经过轴对称后的图形,探索简单图形之间的轴对称关系,并能指出对称轴。

5.欣赏现实生活中的轴对称图形,能利用轴对称进行一些图案设计,体验轴对称在现实生活中的广泛应用和丰富的文化价值。

四、教学改革的设想(教学具体措施)

充分体现培优扶困的实施,提高优秀人数和及格人数,减少低分人数,切实做到:

1、根据学生的个别差异。因材施教,热情关怀,循循善诱,加强个别辅导。帮助他们增强学习的信心,逐步达到教学的基本要求,尽量做好培优辅差工作。

2、精心设计练习,讲究练习方式提高练习效率,对作业严格要求,及时检查,认真批改,对作业中的错误及时找出原因,要求学生认真改正,培养学生独立完成作业的良好习惯。

3、认真备课,深入钻研教材,坚持自主学习,充分发挥学生的主动学习有积极性,了解学生装学习数学的特点,研究教学规律,不断改进教学方法。

4、坚持学习,多听课,多模仿,虚心向有经验的老师请教教育教学方法。努力提升自身的教学技能。

5、在教学中,加强学生思维能力的培养和非智力因素的培养。多开展数学活动课,扩大学生的视野,拓宽知识面,培养学习数学的兴趣,发展数学才能,发挥学生的主动性,独立性和创造性。

6、开展“一帮一”活动,实行以优带差点的帮助方法,多利用课余时间加强辅导,从基础知识补起,力求使学生一课一得,力求提高优秀率和及格率。

7.课前充分备好课,在课堂教学中特别要体现出培扶,分层次教育。

8.重视学生学习兴趣的培养,激发学生学习数学的内驱力。

9.大胆地深度尝试新的教学方法,要因地制宜,因材施教。

10.重视基础知识过关和单元测试过关工作,及时进行单元总结,做好平时的查漏补缺工作,不遗漏知识盲点。

11.注重对作业、练习纸、练习册、测验卷的及时批改,并尽量做到全批全改,及时反馈信息。

12.多用多媒体教学,使数学生动化。

13.多用实物教学,使数学形象化。

14.实行课课清,日日清,周周清。

15.加强课堂管理,严把课堂质量关,提高课堂效率。

16.抓好学生的作业上交完成情况。

17.加强与学生的交流,做好学生的思想教育与培优辅差工作。

五、拟定本学期教学目标

六、拟定本学期培优扶养计划。

培扶措施

对临界优秀生

在理解题、思维训练题给予方法指导,并要加强书面的表达能力。做到思路清晰,格式标准。基础训练题的过关检测,对每次测试的成绩给予个别指导,多用激励教育。

对临界及格生:

首先加强基础知识的培训,尤其要在选择题、填空题多下功夫。在课堂上、课后对他们多加注意,及时纠正错误。抓好每次单元过关测试工作,抓好时机,多表扬,树立信心。

七、教学内容及课时安排(略)

八、作业格式及批改要求:

作业格式:

1.作业本左边都画上竖线,留约0.5cm空白。

2.每次作业都要在第一行注明日期和作业的出处,如p42,1即课本42面第1题。

3。每题作业之间要留一行隔开,每次作业之间至少留一行空白,再写下一次作业。

批改要求:

1.每题作业都要有批改的痕迹,错的打“×”,对的打“√”,书写要清晰,明确看出错对。

2.每次作业必须全批全改,要体现出层次。作业簿要打分数+等级(等级分a、b、c三等,代表学生的书写成绩。)

3、每次的作业要及时更正,更正时统一在每次的作业后面用红笔更正。

初二下数学教案篇4

重难点分析

本节的重点是矩形的性质和判定定理。矩形是在平行四边形的前提下定义的,首先她是平行四边形,但它是特殊的平行四边形,特殊之处就是有一个角是直角,因而就增加了一些特殊的性质和不同于平行四边形的判定方法。矩形的这些性质和判定定理即是平行四边形性质与判定的延续,又是以后要学习的正方形的基础。

本节的难点是矩形性质的灵活应用。由于矩形是特殊的平行四边形,所以它不但具有平行四边形的性质,同时还具有自己独特的性质。如果得到一个平行四边形是矩形,就可以得到许多关于边、角、对角线的条件,在实际解题中,应该应用哪些条件,怎样应用这些条件,常常让许多学生手足无措,教师在教学过程中应给予足够重视。

教法建议

根据本节内容的特点和与平行四边形的关系,建议教师在教学过程中注意以下问题:

1.矩形的知识,学生在小学时接触过一些,可由小学学过的知识作为引入。

2.矩形在现实中的实例较多,在讲解矩形的性质和判定时,教师可自行准备或由学生准备一些生活实例来进行判别应用了哪些性质和判定,既增加了学生的参与感又巩固了所学的知识.

3. 如果条件允许,教师在讲授这节内容前,可指导学生按照教材145页图4-30所示,制作一个平行四边形作为教学过程中的道具,既增强了学生的动手能力和参与感,有在教学中有切实的体例,使学生对知识的掌握更轻松些.

4. 在对性质的讲解中,教师可将学生分成若干组,每个学生分别对事先准备后的图形进行边、角、对角线的测量,然后在组内进行整理、归纳.

5. 由于矩形的性质定理证明比较简单,教师可引导学生分析思路,由学生来进行具体的证明.

6.在矩形性质应用讲解中,为便于理解掌握,教师要注意题目的层次安排。

矩形教学设计

教学目标

1.知道矩形的定义和矩形与平行四边形之间的联系;能说出矩形的四个角都是直角和矩形的的对角线相等的性质;能推出直角三角形斜边上的中线等于斜边的一半的性质。

2.能运用以上性质进行简单的证明和计算。

此外,从矩形与平行四边形的区别与联系中,体会特殊与一般的关系,渗透集合的思想,培养学生辨证唯物主义观点。

引导性材料

想一想:一般四边形与平行四边形之间的相互关系?在图4.5-l的圆圈中填上四边形和平行四边形的字样来说明这种关系:即平行四边形是特殊的四边形,又具有一般四边形的一切性质;具有一些特殊的性质。

小学里已学过长方形,即矩形。显然,矩形是平行四边形,而且矩形还具有四个角都是直角(小学里已学过)等特殊性质,那么,如果在图4.5-1中再画一个圈表示矩形,这个圈应画在哪里?

(让学生初步感知矩形与平行四边形的从属关系。)

演示:用四根木条制作一个平行四边形教具。利用平行四边形的不稳定性,演示如图4.5-2,当平行四边形的一个内角由锐角变为钝角的过程中,会发生怎样的特殊情况,这时的图形是什么图形(矩形)。

问题1:从上面的演示过程,可以发现:平行四边形具备什么条件时,就成了矩形?

说明与建议:教师的演示应充分展现变化过程,从而让学生深切地感受到短形是无数个平行四边形中的一个特例,同时,又使学生能正确地给出矩形的定义。

问题2:矩形是特殊的平行四边形,它除了有一个角是直角以外,还可能具有哪些平行四边形所没有的特殊性质呢?

说明与建议:让学生分组探索,有必要时,教师可引导学生,根据研究平行四边形获得的经验,分别从边、角、对角线三个方面探索矩形的特性,还可提醒学生,这种探索的基础是矩形有一个角是直角矩形的四个角都相等(矩形性质定理1),要学生给以证明(即课本例1后练习第1题)。

学生能探索得出矩形的邻边互相垂直的特性,教师可作说明:这与矩形的四个角是直角本质上是一致的,所以不必另列为一个性质。

学生探索矩形的四条对角线的大小关系时,如有困难,可引导学生测量并比较矩形两条对角线的长度,然后加以证明,得出性质定理2。

问题3:矩形的一条对角线把矩形分成两个直角三角形,矩形的对角线既互相平分又相等,由此,我们可以得到直角三角形的什么重要性质?

说明与建议:(1)让学生先观察图4.5-3,并议论猜想,如学生有困难,教师可引导学生观察图中的一个直角三角形(如rt△abc),让学生自己发现斜边上的中线bo与斜线ac的大小关系,然后让学生自己给出如下证明:

证明:在矩形abcd中,对角线ac、bd相交于点o,ac=bd(矩形的对角线相等)。

,ao=co

在rt△abc中,bo是斜边ac上的中线,且 。

直角三角形斜边上的中线等于斜边的一半。

例题解析

例1:(即课本例1)

说明:本题难度不大,又有助于学生加深对性质定理的理解,教学中应引导学生探索解法:

如图4.5-4,欲求对角线bd的长,由于bad=90,ab=4cm,则只要再找出rt△abd中一条直角边的长,或一个锐角的度数,再从已知条件aod=120出发,应用矩形的性质可知,adb=30,另外,还可以引导学生探究△aob是什么特殊的三角形(等边三角形),课本用了第一种解法,并给出了解几何计算题书写格式的示范;第二种解法如下:

∵四边形abcd是矩形,

ac=bd(矩形的对角线相等)。

又 。

oa=bo,△aob是等腰三角形,

∵aod=120,aob=180- 120= 60

aob是等边三角形。

bo=ab=4cm,

bd=2bo=244cm=8cm。

例2:(补充例题)

已知:如图4.5-5四边形abcd中,abc=adc=90, e是ac的中点,ef平分bed交bd于点f。

(l)猜想:ef与bd具有怎样的关系?

(2)试证明你的猜想。

解:(l)ef垂直平分bd。

(2)证明:∵abc=90,点e是ac的中点。

(直角三角形的斜边上的中线等于斜边的一半)。

同理: 。

be=de。

又∵ef平分bed。

efbd,bf=df。

说明:本例是一道不给出结论,需要学生自己观察---猜想---讨论的几何命题,有助于发展学生的推理(包括合情推理和逻辑推理)能力。如果学生不适应,或有困难,教师可根据实际情况加以引导,这种训练,重要的不是猜对了没有?证明了没有?而是让学生经历这样一种自己研究图形性质的过程,顺便指出:求解本题的重要基础是识图技能----能从复杂图形中分解出如图4.5-6所示的三个基本图形。

课堂练习

1.课本例1后练习题第2题。

2.课本例1后练习题第4题。

小结

1.矩形的定义:

2.归纳总结矩形的性质:

对边平行且相等

四个角都是直角

对角线平行且相等

3.直角三角形斜边上的中线等于斜边的一半。

4.矩形的一条对角线把矩形分成两个全等的直角三角形;矩形的两条对角线把矩形分成四个全等的等腰三角形。因此,有关矩形的问题往往可化为直角三角形或等腰三角形的问题来解决。

作业

l.课本习题4.3a组第2题。

2.课本复习题四a组第6、7题。

初二下数学教案篇5

一、基本知识和需说明的问题:

(一)圆的有关性质,本节中最重要的定理有4个。

1、垂径定理:

本定理和它的三个推论说明: 在(垂直于弦(不是直径的弦);(2)平分弦;(3)平分弦所对的弧;(4)过圆心(是半径或是直径)这四个语句中,满足两个就可得到其它两个的结论。如垂直于弦(不是直径的弦)的直径,平分弦且平分弦所对的两条弧。条件是垂直于弦(不是直径的弦)的直径,结论是平分弦、平分弧。再如弦的垂直平分线,经过圆心且平分弦所对的弧。条件是垂直弦,、分弦,结论是过圆心、平分弦。

应用:在圆中,弦的一半、半径、弦心距组成一个直角三角形,利用勾股定理解直角三角形的知识,可计算弦长、半径、弦心距和弓形的高。

2、圆心角、弧、弦、弦心距四者之间的关系定理:

在同圆和等圆中, 圆心角、弧、弦、弦心距这四组量中有一组量相等,则其它各组量均相等。这个定理证弧相等、弦相等、圆心角相等、弦心距相等是经常用的。

3、圆周角定理:

此定理在证题中不大用,但它的推论,即弧相等所对的圆周角相等;在同圆或等圆中,圆周角相等,弧相等。直径所对的圆周角是直角,90°的圆周角所对的弦是直径,都是很重要的。条件中若有直径,通常添加辅助线形成直角。

4、圆内接四边形的性质。

(二)直线和圆的位置关系。

1、性质:

圆的切线垂直于经过切点的半径。(有了切线,将切点与圆心连结,则半径与切线垂直,所以连结圆心和切点,这条辅助线是常用的。)

2、切线的判定有两种方法。

①若直线与圆有公共点,连圆心和公共点成半径,证明半径与直线垂直即可。

②若直线和圆公共点不确定,过圆心做直线的垂线,证明它是半径(利用定义证)。根据不同的条件,选择不同的添加辅助线的方法是极重要的。

3、三角形的内切圆:

内心是内切圆圆心,具有的性质是:到三角形的三边距离相等,还要注意说某点是三角形的内心。连结三角形的顶点和内心,即是角平分线。

4、切线长定理:自圆外一点引圆的切线,则切线和半径、圆心到该点的连线组成直角三角形。

(三)圆和圆的位置关系。

1、记住5种位置关系的圆心距d与两圆半径之间的相等或不等关系。会利用d与r,r之间的关系确定两圆的位置关系,会利用d,r,r之间的关系确定两圆的位置关系。

2、相交两圆,添加公共弦,通过公共弦将两圆连结起来。

(四)正多边形和圆。

1、弧长公式。

2、扇形面积公式。

3、圆锥侧面积计算公式:s= 2π=π。

二、巩固练习。

(一)精心选一选,相信自己的判断!

1、如图,把自行车的两个车轮看成同一平面内的两个圆,则它们的位置关系是

a、外离 b、外切 c、相交 d、内切

2、已知⊙o的直径为12cm,圆心到直线l的距离为6cm,则直线l与⊙o的公共点的个数为( )

a、2 b、1 c、0 d、不确定

3、已知⊙o1与⊙o2的半径分别为3cm和7cm,两圆的圆心距o1o2 =10cm,则两圆的位置关系是( )

a、外切 b、内切 c、相交 d、相离

4、已知在⊙o中,弦ab的长为8厘米,圆心o到ab的距离为3厘米,则⊙o的半径是( )

a、3厘米 b、4厘米 c、5厘米 d、8厘米

5、下列命题错误的是( )

a、经过三个点一定可以作圆 b、三角形的外心到三角形各顶点的距离相等

c、同圆或等圆中,相等的圆心角所对的弧相等 d、经过切点且垂直于切线的直线必经过圆心

6、在平面直角坐标系中,以点(2,3)为圆心,2为半径的圆必定( )

a、与x轴相离、与y轴相切 b、与x轴、y轴都相离

c、与x轴相切、与y轴相离 d、与x轴、y轴都相切

7、在rt△abc中,∠c=90°,ac=12,bc=5,将△abc绕边ac所在直线旋转一周得到圆锥,则该圆锥的侧面积是( )

a、25π b、65π c、90π d、130?

(二)细心填一填,试自己的身手!

12、各边相等的圆内接多边形_____正多边形;各角相等的圆内接多边形_____正多边形。(填“是”或“不是”)

13、△abc的内切圆半径为r,△abc的周长为l,则△abc的面积为_______________ 。

14、已知在⊙o中,半径r=13,弦ab∥cd,且ab=24,cd=10,则ab与cd的距离为__________。

15、同圆的内接正四边形和内接正方边形的连长比为____________________。

会计实习心得体会最新模板相关文章:

三年级下音乐教案参考5篇

七年级数学下学期工作计划5篇

数学下学期工作计划精选5篇

高二下学期数学教师工作总结5篇

二年级下万以内数的认识教案5篇

初二年级第二学期班主任工作计划优质5篇

五年级下技术教案8篇

三年级下音乐教案通用7篇

数学下学期工作计划7篇

数学下学期工作计划优秀7篇

    相关推荐

    热门推荐

    点击加载更多
    32
    c
    91837

    联系客服

    微信号:fanwen9944
    点击此处复制微信号

    客服在线时间:
    星期一至星期五 8:30~12:30 14:00~18:00

    如有疑问,扫码添加客服微信,
    问题+截图进行提问,客服会第一时间答复。