28范文 >工作计划

数的分解的教案6篇

在制定教案中,教师可以提前了解学生的学习背景和前置知识,有针对性地设计教学内容和教学方法,编写灵活多样的教案可以适应不同教学环境和教学资源,下面是28范文小编为您分享的数的分解的教案6篇,感谢您的参阅。

数的分解的教案6篇

数的分解的教案篇1

活动目标

引导幼儿亲自操作,认识并熟悉6的组成及分解,掌握6的5种分法。

培养幼儿的观察力,分析力和培养幼儿对数学的兴趣。

养成敢想敢做、勤学、乐学的良好素质。

使幼儿体会到生活中处处有数学。

教学重点、难点

认识并熟记6的5种分法

活动准备

1.6的组成,分解图一幅。2.带磁铁鸡宝宝卡片若干。3.树的挂图4幅,可拆卸苹果卡片若干,篮子若干个。

活动过程

1. 老师和小朋友先复习一下之前学过的5.4.3.2数的组成及分解。

如老师问:5可以分成几和几。

小朋友答:5可以分成1和4。

2. 学习6的组成及分解:

出示6的组成,分解图一幅.

老师:今天鸭妈妈很高兴,因为它请了几只鸡宝宝来家里做客,小朋友们,你们看一下鸭妈妈请了几只鸡宝宝来做客呀。(老师出示6只鸡宝宝的卡片并和幼儿一起数数共6只)

老师:鸭妈妈要把鸡宝宝安排住进两个房子里,是两个房子喔。但是它不知道要怎么样分配这6只鸡宝宝,有多少种办法可以让鸡宝宝住进去呢。办法是不能重复的,看一下哪几位小朋友能帮鸭妈妈把鸡宝宝安排房子住进去,好不好。

请小朋友到讲台前把鸡宝宝的卡片粘到画有房子的黑板上。老师记录每一次分出来的结果。再把小朋友分出来的几种方法总结归纳得出5种分法。

6 6 6 6 6

/\ /\ /\ / \ /\

1 5 2 4 3 3 4 2 5 1

3. 引导幼儿观察6的分解式,令幼儿发现把一个数分为两个数,而这两个数合起来又等于这个数。分解出来的数,左边的数进1,右边的数就退1,还可以把分解出来的两个数调换过来,合起来还是得到这个数。

4. 巩固练习游戏:摘苹果比赛

老师:(出示苹果树的挂图)小朋友你们看,树上的苹果熟了,想不想把它们摘下来呀。我们来进行摘苹果的比赛好不好。(把小朋友分为4个组进行)我们先讲一下比赛规则:小朋友把摘下来的苹果放在两个篮子里,两个篮子里的苹果加起来要等于6,每一组派一个小朋友上去摘,其余的小朋友在下面看,看他把苹果摘下来放得对不对,有多少种方法放这些苹果,要两边加起来都是等于6喔。如果他放错了,其他的小朋友可以上去帮他重新放,注意放的方法不能重复。我们来比一下哪一组的小朋友放的方法最多,放得最快。

教学反思

本次数学活动主要以游戏为主体,利用帮鸭妈妈安排鸡宝宝住下及摘苹果比赛让幼儿在游戏中认识并掌握6的组成及分解,与以往教学活动相比较增加了趣味性,激发了幼儿的学习兴趣,达到了在游戏中学习的目的。在后面的摘苹果比赛中,充分的利用了小朋友喜欢竞争的心理,自已组里的小朋友可以讨论方法对不对,增加了幼儿之间的互动。就是在时间上掌握得不够好,到后面小朋友为了争第一都有点乱了,如果重新上一次的话,觉得应该设定好一个时间,在这个时间内哪一组的小朋友得出的方法最多获胜,可以更大的激发小朋友的兴趣。

数的分解的教案篇2

教学目标:

1、掌握用平方差公式分解因式的方法;掌握提公因式法,平方差公式法分解因式综合应用;能利用平方差公式法解决实际问题。

2、经历探究分解因式方法的过程,体会整式乘法与分解因式之间的联系。

3、通过对公式的探究,深刻理解公式的应用,并会熟练应用公式解决问题。

4、通过探究平方差公式特点,学生根据公式自己取值设计问题,并根据公式自己解决问题的过程,让学生获得成功的体验,培养合作交流意识。

教学重点:

应用平方差公式分解因式.

教学难点:

灵活应用公式和提公因式法分解因式,并理解因式分解的要求.

教学过程:

一、复习准备 导入新课

1、什么是因式分解?判断下列变形过程,哪个是因式分解?

①(x+2)(x-2)= ②

2、我们已经学过的因式分解的方法有什么?将下列多项式分解因式。

x2+2x

a2b-ab

3、根据乘法公式进行计算:

(1)(x+3)(x-3)= (2)(2y+1)(2y-1)= (3)(a+b)(a-b)=

二、合作探究 学习新知

(一) 猜一猜:你能将下面的多项式分解因式吗?

(1)= (2)= (3)=

(二)想一想,议一议: 观察下面的公式:

=(a+b)(a—b)(

这个公式左边的多项式有什么特征:_____________________________________

公式右边是__________________________________________________________

这个公式你能用语言来描述吗? _______________________________________

(三)练一练:

1、下列多项式能否用平方差公式来分解因式?为什么?

① ② ③ ④

2、你能把下列的数或式写成幂的形式吗?

(1)( ) (2)( ) (3)( ) (4)= ( ) (5) 36a4=( )2 (6) 0.49b2=( )2 (7) 81n6=( )2 (8) 100p4q2=( )2

(四)做一做:

例3 分解因式:

(1) 4x2- 9 (2) (x+p)2- (x+q)2

(五)试一试:

例4 下面的式子你能用什么方法来分解因式呢?请你试一试。

(1) x4- y4 (2) a3b- ab

(六)想一想:

某学校有一个边长为85米的正方形场地,现在场地的四个角分别建一个边长为5米的正方形花坛,问场地还剩余多大面积供学生课间活动使用?

数的分解的教案篇3

活动设计背景:

数的组成和分解是数概念教育内容中的一个重要组成部分。新《纲要》要求幼儿“从生活和游戏中感知事物的数量关系”,还要关注幼儿探索、操作、交流、问题解决和合作的能力。本学期大班幼儿已经学过了《6—9以内各数分解与组成》,对于数的组成他们也已经有了一定经验。我尝试让幼儿亲自动手操作、然后记录结果,在教师的引导下寻找分解和组成的规律,让幼儿在玩中学,以达到活动目标与幼儿兴趣最优化的结合。

活动目标:

1、引导幼儿通过动手操作,感知10的分解组成,掌握10的9种分法。

2、在感知数的分解组成的基础上,掌握数组成的递增、递减规律和互相交换的规律。

3、发展幼儿观察力、分析力,培养幼儿对数学的兴趣。

4、培养幼儿的尝试精神,发展幼儿思维的敏捷性、逻辑性。

5、喜欢数学活动,乐意参与各种操作游戏,培养思维的逆反性。

教学重点、难点:

1、重点:感知整体与部分的关系,学习并记录10的9种分法。

2、难点:总结归纳10以内数的分解和组成规律。

活动准备:

1、ppt课件、操作学具打印。

2、若干小矮人图片和小房子(课前已打印)。

3、数字卡片若干(课前已打印)。

活动过程:

(一)、问答形式复习以前学过的数的组成和分解。如:

师:我来问,你来答,9可以分成3和几?(幼儿边拍手边回答)

(二)、学习10 的组成和分解。

1、故事导入(ppt)。

教师:在一座茂密的森林里,住着一位美丽的白雪公主,今天,白雪公主非常高兴,因为有小客人要到森林里做客,你们看,他们来了。

提问:

(1)来了几位小矮人?

(2)10位小矮人要住进两座小房子里,该怎么住呢?引出课题《10的分解与组成》。

2、幼儿动手操作卡片,把10张小矮人卡片摆一摆,记一记来思考10的多种分法,帮助白雪公主做出不同的安排方法。

(1)把幼儿分成10组,每四人一组。

(2)每组请一名幼儿做记录,其余幼儿动手操作。

(3)教师根据幼儿操作情况总结10的9种分法:(ppt)

3、出示ppt,引导幼儿观察10的分解式,发现总结10以内数分解组成规律:除1以外,每个数分法的种类都比本身少1;把一个数分解成两个较小的数,所分成的两个数合起来就是原来的数,即整体大于部分;把一个数分成两部分,如果一部分增加1,另外一部分就减少个1,即递增递减规律;交换规律。

(三) 、巩固练习(操作学具)

1、卡片填数

2、找钥匙开锁 (开锁:一把钥匙开一把锁,请小朋友仔细看看钥匙和锁上的数字,哪两个数字合起来是10,就用线连起来)。

(四) 、游戏活动

1、“找朋友”。

游戏规则:请前面手里拿卡片的小朋友找座位上的小朋友做“好朋友”,要求两数和起来是10。

2、火车开了。

游戏规则:幼儿每人一张数字卡片,找和自己卡片上数字合起来是10的小朋友手拉手一起上火车,边唱《火车开了》歌曲边出活动室。

教学反思:

本节课我从幼儿已有知识出发,结合幼儿的生活实际和年龄特点,创设生动有趣的.故事情境,让幼儿通过摆一摆、记一记、说一说等生动有趣的活动,自主尝试探索,学习并掌握了10的9种分法,幼儿能用较为清楚的语言表达分与合的过程,在此基础上,还发现和总结出10以内数的分解和组成规律。活动中,幼儿表现出浓厚的兴趣,又体验到了成功的喜悦。不足的是在最后的游戏环节里,忙乱中忘了让幼儿自己去找“好朋友”;个别幼儿动手能力和参与意识较差,不愿与同伴交流,还需加强训练。

数的分解的教案篇4

【教学目标】

1、了解因式分解的概念和意义;

2、认识因式分解与整式乘法的相互关系——相反变形,并会运用它们之间的相互关系寻求因式分解的方法。

【教学重点、难点】

重点是因式分解的概念,难点是理解因式分解与整式乘法的相互关系,并运用它们之间的相互关系寻求因式分解的方法。

【教学过程】

??、情境导入

看谁算得快:(抢答)

(1)若a=101,b=99,则a2-b2=___________;

(2)若a=99,b=-1,则a2-2ab+b2=____________;

(3)若x=-3,则20x2+60x=____________。

??、探究新知

1、请每题答得最快的同学谈思路,得出最佳解题方法。(多媒体出示答案)(1)a2-b2=(a+b)(a-b)=(101+99)(101-99)=400;

(2)a2-2ab+b2=(a-b) 2=(99+1)2 =10000;

(3)20x2+60x=20x(x+3)=20x(-3)(-3+3)=0。

2、观察:a2-b2=(a+b)(a-b),a2-2ab+b2 = (a-b)2, 20x2+60x=20x(x+3),找出它们的特点。(等式的左边是一个什么式子,右边又是什么形式?)

3、类比小学学过的因数分解概念,得出因式分解概念。(学生概括,老师补充。)

板书课题:§6.1 因式分解

因式分解概念:把一个多项式化成几个整式的积的形式叫做因式分解,也叫分解因式

??、前进一步

1、让学生继续观察:(a+b)(a-b)= a2-b2, (a-b)2= a2-2ab+b2, 20x(x+3)= 20x2+60x,它们是什么运算?与因式分解有何关系?它们有何联系与区别?

2、因式分解与整式乘法的关系:

因式分解

结合:a2-b2 (a+b)(a-b)

整式乘法

说明:从左到右是因式分解其特点是:由和差形式(多项式)转化成整式的积的形式;从右到左是整式乘法其特点是:由整式积的形式转化成和差形式(多项式)。

结论:因式分解与整式乘法的相互关系——相反变形。

??、巩固新知

1、 下列代数式变形中,哪些是因式分解?哪些不是?为什么?

(1)x2-3x+1=x(x-3)+1 ;(2)(m+n)(a+b)+(m+n)(x+y)=(m+n)(a+b+x+y);

(3)2m(m-n)=2m2-2mn; (4)4x2-4x+1=(2x-1)2;(5)3a2+6a=3a(a+2);

(6)x2-4+3x=(x-2)(x+2)+3x; (7)k2++2=(k+)2;(8)18a3bc=3a2b·6ac。

2、你能写出整式相乘(其中至少一个是多项式)的两个例子,并由此得到相应的两个多项式的因式分解吗?把结果与你的同伴交流。

??、应用解释

例 检验下列因式分解是否正确:

(1)x2y-xy2=xy(x-y);(2)2x2-1=(2x+1)(2x-1);(3)x2+3x+2=(x+1)(x+2).

分析:检验因式分解是否正确,只要看等式右边几个整式相乘的积与右边的多项式是否相等。

练习 计算下列各题,并说明你的算法:(请学生板演)

(1)872+87×13

(2)1012-992

??、思维拓展

1.若 x2+mx-n能分解成(x-2)(x-5),则m= ,n=

2.机动题:(填空)x2-8x+m=(x-4)( ),且m=

??、课堂回顾

今天这节课,你学到了哪些知识?有哪些收获与感受?说出来大家分享。

??、布置作业

作业本(1) ,一课一练

(九)教学反思:

数的分解的教案篇5

教学目标

1、 会运用因式分解进行简单的多项式除法。

2、 会运用因式分解解简单的方程。

二、教学重点与难点教学重点:

教学重点

因式分解在多项式除法和解方程两方面的应用。

教学难点:

应用因式分解解方程涉及较多的推理过程。

三、教学过程

(一)引入新课

1、 知识回顾(1) 因式分解的几种方法: ①提取公因式法: ma+mb=m(a+b) ②应用平方差公式: = (a+b) (a—b)③应用完全平方公式:a 2ab+b =(ab) (2) 课前热身: ①分解因式:(x +4) y — 16x y

(二)师生互动,讲授新课

1、运用因式分解进行多项式除法例1 计算: (1) (2ab —8a b) (4a—b)(2)(4x —9) (3—2x)解:(1) (2ab —8a b)(4a—b) =—2ab(4a—b) (4a—b) =—2ab (2) (4x —9) (3—2x) =(2x+3)(2x—3) [—(2x—3)] =—(2x+3) =—2x—3

一个小问题 :这里的x能等于3/2吗 ?为什么?

想一想:那么(4x —9) (3—2x) 呢?练习:课本p162课内练习

合作学习

想一想:如果已知 ( )( )=0 ,那么这两个括号内应填入怎样的数或代数式子才能够满足条件呢? (让学生自己思考、相互之间讨论!)事实上,若ab=0 ,则有下面的结论:(1)a和b同时都为零,即a=0,且b=0(2)a和b中有一个为零,即a=0,或b=0

试一试:你能运用上面的结论解方程(2x+1)(3x—2)=0 吗?3、 运用因式分解解简单的方程例2 解下列方程: (1) 2x +x=0 (2) (2x—1) =(x+2) 解:x(x+1)=0 解:(2x—1) —(x+2) =0则x=0,或2x+1=0 (3x+1)(x—3)=0原方程的根是x1=0,x2= 则3x+1=0,或x—3=0 原方程的根是x1= ,x2=3注:只含有一个未知数的方程的解也叫做根,当方程的根多于一个时,常用带足标的字母表示,比如:x1 ,x2

等练习:课本p162课内练习2

做一做!对于方程:x+2=(x+2) ,你是如何解该方程的,方程左右两边能同时除以(x+2)吗?为什么?

教师总结:运用因式分解解方程的基本步骤(1)如果方程的右边是零,那么把左边分解因式,转化为解若干个一元一次方程;(2)如果方程的两边都不是零,那么应该先移项,把方程的右边化为零以后再进行解方程;遇到方程两边有公因式,同样需要先进行移项使右边化为零,切忌两边同时除以公因式!4、知识延伸解方程:(x +4) —16x =0解:将原方程左边分解因式,得 (x +4) —(4x) =0(x +4+4x)(x +4—4x)=0(x +4x+4)(x —4x+4)=0 (x+2) (x—2) =0接着继续解方程,5、 练一练 ①已知 a、b、c为三角形的三边,试判断 a —2ab+b —c 大于零?小于零?等于零?解: a —2ab+b —c =(a—b) —c =(a—b+c)(a—b—c)∵ a、b、c为三角形的三边 a+c ﹥b a﹤b+c a—b+c﹥0 a—b—c ﹤0即:(a—b+c)(a—b—c) ﹤0 ,因此 a —2ab+b —c 小于零。6、 挑战极限①已知:x=20xx,求∣4x —4x+3 ∣ —4 ∣ x +2x+2 ∣ +13x+6的值。解: ∵4x — 4x+3= (4x —4x+1)+2 = (2x—1) +2 0x +2x+2 = (x +2x+1)+1 = (x+1) +10 ∣4x —4x+3 ∣ —4 ∣ x +2x+2 ∣ +13x+6= 4x — 4x+3 —4(x +2x+2 ) +13x+6= 4x — 4x+3 —4x —8x —8+13x+6= x+1即:原式= x+1=20xx+1=20xx

(三)梳理知识,总结收获因式分解的两种应用:

(1)运用因式分解进行多项式除法

(2)运用因式分解解简单的方程

(四)布置课后作业

作业本6、42、课本p163作业题(选做)

数的分解的教案篇6

教学目标:

1、知识与技能:掌握运用提公因式法、公式法分解因式,培养学生应用因式分解解决问题的能力。

2、过程与方法:经历探索因式分解方法的过程,培养学生研讨问题的方法,通过猜测、推理、验证、归纳等步骤,得出因式分解的方法。

3、情感态度与价值观:通过因式分解的学习,使学生体会数学美,体会成功的自信和团结合作精神,并体会整体数学思想和转化的数学思想。

教学重、难点:用提公因式法和公式法分解因式。

教具准备:多媒体课件(小黑板)

教学方法:活动探究法

教学过程:

引入:在整式的变形中,有时需要将一个多项式写成几个整式的乘积的形式,这种变形就是因式分解。什么叫因式分解?

知识详解

知识点1因式分解的定义

把一个多项式化成几个整式的'积的形式,这种变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式。

?说明】(1)因式分解与整式乘法是相反方向的变形。

例如:

(2)因式分解是恒等变形,因此可以用整式乘法来检验。

怎样把一个多项式分解因式?

知识点2提公因式法

多项式ma+mb+mc中的各项都有一个公共的因式m,我们把因式m叫做这个多项式的公因式。ma+mb+mc=m(a+b+c)就是把ma+mb+mc分解成两个因式乘积的形式,其中一个因式是各项的公因式m,另一个因式(a+b+c)是ma+mb+mc除以m所得的商,像这种分解因式的方法叫做提公因式法。例如:x2—x=x(x—1),8a2b—4ab+2a=2a(4ab—2b+1)。

探究交流

下列变形是否是因式分解?为什么?

(1)3x2y—xy+y=y(3x2—x);(2)x2—2x+3=(x—1)2+2;

(3)x2y2+2xy—1=(xy+1)(xy—1);(4)xn(x2—x+1)=xn+2—xn+1+xn。

典例剖析师生互动

例1用提公因式法将下列各式因式分解。

(1)—x3z+x4y;(2)3x(a—b)+2y(b—a);

分析:(1)题直接提取公因式分解即可,(2)题首先要适当的变形,再把b—a化成—(a—b),然后再提取公因式。

小结运用提公因式法分解因式时,要注意下列问题:

(1)因式分解的结果每个括号内如有同类项要合并,而且每个括号内不能再分解。

(2)如果出现像(2)小题需统一时,首先统一,尽可能使统一的个数少。这时注意到(a—b)n=(b—a)n(n为偶数)。

(3)因式分解最后如果有同底数幂,要写成幂的形式。

学生做一做把下列各式分解因式。

(1)(2a+b)(2a—3b)+(2a+5b)(2a+b);(2)4p(1—q)3+2(q—1)2

知识点3公式法

(1)平方差公式:a2—b2=(a+b)(a—b)。即两个数的平方差,等于这两个数的和与这个数的差的积。例如:4x2—9=(2x)2—32=(2x+3)(2x—3)。

(2)完全平方公式:a2±2ab+b2=(a±b)2。其中,a2±2ab+b2叫做完全平方式。即两个数的平方和加上(或减去)这两个数的积的2倍,等于这两个数的和(或差)的平方。例如:4x2—12xy+9y2=(2x)2—2·2x·3y+(3y)2=(2x—3y)2。

探究交流

下列变形是否正确?为什么?

(1)x2—3y2=(x+3y)(x—3y);(2)4x2—6xy+9y2=(2x—3y)2;(3)x2—2x—1=(x—1)2。

例2把下列各式分解因式。

(1)(a+b)2—4a2;(2)1—10x+25x2;(3)(m+n)2—6(m+n)+9。

分析:本题旨在考查用完全平方公式分解因式。

学生做一做把下列各式分解因式。

(1)(x2+4)2—2(x2+4)+1;(2)(x+y)2—4(x+y—1)。

综合运用

例3分解因式。

(1)x3—2x2+x;(2)x2(x—y)+y2(y—x);

分析:本题旨在考查综合运用提公因式法和公式法分解因式。

小结解因式分解题时,首先考虑是否有公因式,如果有,先提公因式;如果没有公因式是两项,则考虑能否用平方差公式分解因式。是三项式考虑用完全平方式,最后,直到每一个因式都不能再分解为止。

探索与创新题

例4若9x2+kxy+36y2是完全平方式,则k= 。

分析:完全平方式是形如:a2±2ab+b2即两数的平方和与这两个数乘积的2倍的和(或差)。

学生做一做若x2+(k+3)x+9是完全平方式,则k= 。

课堂小结

用提公因式法和公式法分解因式,会运用因式分解解决计算问题。

各项有"公"先提"公",首项有负常提负,某项提出莫漏"1",括号里面分到"底"。

自我评价知识巩固

1、若x2+2(m—3)x+16是完全平方式,则m的值等于()

a、3 b、—5 c、7 d、7或—1

2、若(2x)n—81=(4x2+9)(2x+3)(2x—3),则n的值是()

a、2 b、4 c、6 d、8

3、分解因式:4x2—9y2= 。

4、已知x—y=1,xy=2,求x3y—2x2y2+xy3的值。

5、把多项式1—x2+2xy—y2分解因式

思考题分解因式(x4+x2—4)(x4+x2+3)+10。

会计实习心得体会最新模板相关文章:

妈妈心妈妈数的读后感精选7篇

妈妈心妈妈数的读后感优质7篇

幼儿的教案详细教案6篇

我的名字的教案6篇

心脏的教案6篇

夜莺的歌声的教案6篇

《鸟》的教案6篇

中班数学6—10的认识教案6篇

声音的特性教案6篇

画老鼠的教案6篇

    相关推荐

    热门推荐

    点击加载更多
    32
    c
    140300

    联系客服

    微信号:fanwen9944
    点击此处复制微信号

    客服在线时间:
    星期一至星期五 8:30~12:30 14:00~18:00

    如有疑问,扫码添加客服微信,
    问题+截图进行提问,客服会第一时间答复。